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Abstract An external feedback control is inserted in a
nonlinear continuum formulation of a noncontact AFM
model. The aim of the feedback is to keep the system
response to an operationally suitable one, thus allowing
reliable measurement of the sample surface by avoid-
ing possible unstable microcantilever sensor motions.
The study of the weakly nonlinear system dynamics
about the desired fixed point close to primary reso-
nance is carried out via multiple-scale asymptotics,
whose outcomes are validated via numerical simula-
tions of the original system equations of motion. The
latter include controllable periodic dynamics and addi-
tional periodic and distinct quasiperiodic solutions that
appear beyond the asymptotic stability thresholds. The
results highlight the effectiveness of the applied feed-
back control technique and also enable the derivation
of a comprehensive system bifurcation structure high-
lighting the stability thresholds for robust controllable
AFM dynamics.
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1 Introduction

A wide variety of phenomena which characterize the
atomic force microscope (AFM) microcantilever non-
linear dynamical behavior has been clearly revealed in
the last years, and well-known dynamical events, such
as bifurcations, in-well instability regions, and eventu-
ally chaotic motions, have been experimentally and the-
oretically documented [1–5]. In particular, the authors
have already analyzed the rich nonlinear dynamical
behavior of a single-mode model of noncontact AFM
proposed by [6] in terms of identification of the bifur-
cation scenarios and the stability regions as a func-
tion of the main system dynamical parameters, and the
obtained results have stressed the strong variability of
the response when the system operating parameters are
slightly modified [7]. As a consequence, strong alter-
ations of the dynamical response can occur, leading
to possible unstable, aperiodic, and even chaotic oscil-
lations, which represent an undesirable behavior and
cause a restriction to the operating range of many elec-
tronic and mechanical systems. Indeed, the calibration
of parameters can be influenced by various distortions,
due to instrumental noise, thermal fluctuations, arti-
facts created by the AFM tip, contamination of the
mineral or tip surface, and tip-induced surface defor-
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mations. These various and complex effects are inves-
tigated almost exclusively with experimental analyses
[8–11] due to the great difficulty in formulating stan-
dard models for phenomena that are closely related to
the specific material characteristics and operation of
these instruments.

Moreover, for AFMs operating in the noncontact
mode, the topography is strongly related to the tip-
sample distance, as the tip has to maintain a target dis-
tance from the sample so as to ensure that the microcan-
tilever elastic restoring force is stronger than the atomic
attraction between tip and sample. Otherwise, instabil-
ity of the equilibrium configuration occurs, with the
so-called jump-to-contact, or escape (in dynamical sys-
tems terms) phenomenon. During the scan operation,
however, the sample roughness can modify the distance
between the microcantilever tip and the sample to be
scanned, and thus, the nonlinear atomic force interac-
tion which is used to obtain the topography can lead to
unstable dangerous motions as sketched in the follow-
ing Sect. 1.1. To prevent these undesirable motions,
several control techniques have been proposed in the
field of AFMs during the last two decades, primar-
ily based on the feedback control methods [12–20].
Among them, Yagasaki [21] has recently applied the
external feedback control technique proposed by Pyra-
gas [22] to a simple tapping AFM model that works by
keeping the microcantilever vibration to a selected ref-
erence one and allowing to simultaneously and reliably
measure the sample surface.

The aim of this work is to implement a control pro-
cedure within a nonlinear model of noncontact AFM
well established in the literature, in order to assess its
effects on the system dynamics and to critically eval-
uate its actual effectiveness in the selected operation
conditions of air and weak vacuum.

For this purpose, the feedback control method pro-
posed by Yagasaki [21,23] is introduced at the out-
set of the continuum-based noncontact AFM nonlinear
model formulation by Hornstein and Gottlieb [6]; in
particular, the periodic motion used as a reference in
the control procedure is chosen to be the response of
the corresponding uncontrolled system, for which the
analysis presented in Rega and Settimi [7] has already
allowed detection of the main stability regions for the
most relevant parameters combinations. Following the
existence and stability analysis of the controlled sys-
tem equilibria, the effectiveness of the procedure in the
weakly nonlinear regime is checked via the asymptotic

multiple-scale method, which yields a reduced set of
differential equations governing the slow-time ampli-
tudes of motion. The slow dynamics are compared with
the results obtained by numerical integration of the
original system equations. Throughout the study, the
analysis of the controlled system is compared with the
underlying uncontrolled one.

The paper is organized as follows. Continuous and
reduced-order modeling of the dynamics of controlled
system is addressed in Sect. 2. A high-order multiple-
scale analysis of weakly nonlinear dynamics is accom-
plished in Sect. 3. Section 4 is devoted to verification
of the control effectiveness in maintaining the desired
system response, and to numerically validating the pos-
sible outcomes of the asymptotic approximation culmi-
nating with the controlled system bifurcation structure.
The paper ends with some conclusions.

1.1 Influence of the tip-sample distance
on the dynamics of a single-mode model

Referring to the single-mode model of a nonlinear
noncontact AFM microcantilever derived and analyzed
asymptotically in Hornstein and Gottlieb [6] and ana-
lyzed numerically in Rega and Settimi [7] (see Fig. 2a
forward), it is of interest to investigate the changes in
the system response as a function of the varying tip-
sample gap. To this end, a new nondimensional para-
meter δg , which represents the possible changes in the
tip-sample distance, is introduced into the atomic inter-
action term of the reduced-order equation of motion
(22) of Hornstein and Gottlieb [6]:
(

1 + α2x2
)

ẍ +
(
α1 + α2 ẋ2 + α3x2

)
x

= − Γ1(
1 − δg + x + Vg

)2 −
(
ρ1 + ρ2x2

)
ẋ

− (
V̈g + ν1V̇g

)
ν2

+
(
μ1x + μ2x3

) (
Üg + η1U̇g + η2Ug

)
(1)

where δg = δ̄g/γ is the nondimensional reduction ratio
of the tip-sample gap. For the meaning of the various
quantities, see Sect. 2.1.

Bifurcation diagrams of Fig. 1a, b are obtained for
the parametrically excited (Vg = 0, Ug = U sin(ωut))
AFM model near the fundamental resonance and for the
following set of parameter values: α1 = 1, α3 = 0.1,
ρ1 = 0.001, Γ1 = 0.1,μ1 = 1.5708, ωu = 0.76.
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Fig. 1 Bifurcation diagrams as a function of the forcing ampli-
tude U for δg = 0 (black line), δg = 0.1 (red line), δg = −0.05
(blue line), and δg = −0.1 (green line) (a); bifurcation dia-
gram as a function of the tip-sample gap at U = 0.25 (b), for

ωu = 0.76. Gray square period doubling bifurcation; White cir-
cle saddle-node bifurcation; P1L low-amplitude 1-period solu-
tion; P1H high-amplitude 1-period solution. (Color figure online)

The results clearly highlight that the tip-sample
gap strongly modifies the dynamical behavior of the
AFM microcantilever, changing the regions of exis-
tence and/or stability of the main periodic solutions
(i.e., low-amplitude P1L solution and high-amplitude
P1H solution defined in Fig. 1). This means that dur-
ing the horizontal scan operations that incorporate
changes in tip-sample distance, the dynamical response
of the microcantilever can suddenly pass from low-
amplitude oscillations (point D in Fig. 1) to high-
amplitude motions (point A in Fig. 1) and eventu-
ally bring to unstable periodic solutions (points B
and C in Fig. 1), the last ones representing unwanted
responses that entail erroneous results on the sample
topography.

2 Modeling

2.1 Equations of motion and reduced-order model

The physical model at the base of the work is a fixed-
free AFM microcantilever, which is assumed to be pla-
nar, inextensible, and horizontal, with length L and a
sharp tip of height hT close to its free end, and with
a distance g between its fixed side and the sample
(Fig. 2a). The beam material is considered linearly elas-
tic, homogeneous, and isotropic, with Young’s modulus
E . The general formulation of Hornstein and Gottlieb

[6], based on the classical inextensional beam model
of Crespo da Silva and Glynn [24], is referred to, and
following the method proposed by Yagasaki [21], a sta-
ble periodic response of the mentioned AFM model is
chosen as the reference one. The corresponding posi-
tions of the oscillating microcantilever base and of the
sample surface represent consequently the reference
configuration (see Fig. 2a). When the microcantilever
response changes due to variations in the sample sur-
face position, the external feedback control acts by
keeping it to the reference one thanks to the control
of the microcantilever base position. A new parameter
ξ̄s is thus introduced, which is the displacement of the
sample surface from the selected reference position,
while the new variable ξ̄ (t) represents the distance of
the fixed side of the microcantilever from the horizontal
reference axis (Fig. 2b).

Differently from the procedure followed by
Yagasaki, who inserted the control into the reduced
single-mode model of tapping AFM, in this work, the
control is introduced at the very beginning of the model
formulation; accordingly, a new d.o.f. is added to the
general relations of the uncontrolled system [6]:

mūtt − [E I v̄rrr v̄r − Jz v̄t tr v̄r + �(1 + ūr )]r = Q̄u

mv̄t t − [E I (v̄rrr + v̄r v̄
2
rr )

+ Jz(v̄t tr + v̄2
tr v̄r ) + �v̄r ]r = Q̄v

ξ̄t = k̄(v̄ref − v̄) (2)
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Fig. 2 Microcantilever at reference position (a) and in a generic configuration (b); lines A and B represent the reference positions of
the microcantilever and the sample surface, respectively. (Color figure online)

where coefficients E I , Jz , and m are the beam flex-
ural stiffness, principal mass moment of inertia about
z, and mass per unit reference length, respectively; �

is a Lagrange multiplier accounting for the inexten-
sibility condition; and subscript letters denote partial
differentiation with respect to the arc-length r and time
t . ū(r, t) and v̄(r, t) are now the horizontal and vertical
displacements of the controlled system; v̄ref (r, t) rep-
resents the reference vertical displacement, obtained
from the uncontrolled system (ξ̄ = 0); and k̄ is a feed-
back constant. The generalized forces in horizontal and
vertical directions Q̄u and Q̄v are

Q̄u = −ḡ1ūt − ḡ2ūtrr − ḡ3ū

Q̄v = δ(r − aT )F A
v − d v̄t

(3)

the latter also accounting for the localized (at r = aT ,
see Fig. 2a) transverse atomic force interaction F A

v ,
derived from the phenomenological Lennard-Jones
(LJ) potential [25–27] for a sphere-plane system. The
LJ potential is extensively used in the AFM literature
to derive the atomic interaction force, as it takes into
account both the attractive and the repulsive contribu-
tions (see, e.g., [14,15,18]). It is noteworthy that a vari-
ety of methods have been used to estimate the Hamaker
constant governing the force derived from the LJ poten-
tial [28,29], and recently, a novel strategy was demon-
strated for appropriate selection of van der Waals force
interactions, thus enabling experimental-based model
verification [30]. As LJ potential is dependent on the
tip-sample distance g, its expression is modified by the
external feedback control as follows

F A
v = AH RT

6σ 2
a

[
−

(
σa

g + v̄ − hT − ξ̄s

)2

+ 1

30

(
σa

g + v̄ − hT − ξ̄s

)8
]

(4)

The term out of parenthesis on the right side is the
magnitude of the potential in terms of Hamaker con-
stant AH and tip radius RT , while the term in parenthe-
sis describes the shape of the potential in terms of the
actual tip-sample distance g and a typical atomic dis-
tance σa . ḡ1, ḡ2, and ḡ3 are coefficients related to linear
viscous damping, material viscoelastic damping, and a
proportional displacement gain, respectively, while d is
a viscous damping coefficient and δ is the Dirac delta.
The new variable ξ̄ (t) modifies the boundary condi-
tions as follows:

v̄(0, t) = V̄ (t) + ξ̄ (t) = W̄ (t), v̄r (0, t) = 0,

ū(0, t) = Ū (t), v̄rr (L , t) = 0, v̄rrr (L , t) = 0,

ūr (L , t) = 0. (5)

with V̄ (t) and Ū (t) the vertical transverse and hori-
zontal scan displacement, respectively. The holonomic
inextensibility constraint ((1 + ūr )

2 + v̄2
r = 1) inte-

gration and incorporation in the horizontal boundary
conditions yields

ū(r) = Ū (t) −
∫ r

0
v̄2

r dr (6)

Its substitution in the first equation of (2) and the sub-
sequent integration of the partial integro-differential
equation allow one to isolate the Lagrangian multiplier

� =
(

1 − 1

2
v̄2

r

)−1 [
Jz v̄t tr v̄r − E I v̄rrr v̄r

+ m
∫ r

L
Ūtt dr − m

2

∫ r

L

d2

dt2

(∫ r

0
v̄2

r dr

)
dr −

∫ r

L
Q̄udr

]

(7)

Rescaling the boundary problem by its length L (s =
r/L) and time (τ = ωs t) by a standard characteristic
frequency ωs = √

E I/mL4, expanding the multiplier
up to the cubic order, substituting into the nondimen-
sional form of the second of (2), and transforming the
nondimensional system to a moving reference frame
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v(s, τ ) = w(s, τ ) + V (τ ) (8)

yield

wττ + Wττ + wssss − μwττ ss − Qw

=
[
−ws (wssws)s + μws (wτ sws)τ

+ ws

((
1 + 1

2
w2

s

) ∫ s

1
Uττ ds

− 1

2

∫ s

1

(∫ s

0
w2

s ds

)

ττ

ds

−
(

1 + 1

2
w2

s

) ∫ s

1
Quds

)]

s

ξτ = k(wref − w) (9)

where

Qu = −g1

[
Uτ (τ ) − 1

2

∂

∂τ

(∫ s

0
w2

s ds

)]

+ 1

2
g2

[
∂3

∂τ∂s2

(∫ s

0
w2

s ds

)]

− g3

[
U (τ ) − 1

2

∫ s

0
w2

s ds

]
(10)

and the generalized force in vertical direction Qv is
modified by the boundary conditions (5) as follows:

Qw = δ(s − α)Γ̄1

[
− 1

(γ + w + W − ξs)2

+ Γ̄2

(γ + w + W − ξs)8

]
− v(wτ + Bτ ) (11)

with ξ = ξ̄ /L , ξs = ξ̄s/L , k = k̄/L , W = W̄/L ,
wref = v̄ref /L , and

v = v̄/L , vs = v̄r , vss = v̄rr/L , vsss = v̄rrr/L2,

Qu = L3 Q̄u/E I, Qv = L3 Q̄v/E I, μ = Jz/mL2,

U (τ ) = Ū/L , V (τ ) = V̄ /L , g1 = ḡ1L4ωs/E I,

g2 = ḡ2L2ωs/E I, g3 = ḡ3L4ωs/E I, ν = dωs L ,

Γ̄1 = AH RT /6E I, Γ̄2 = (σa L)6/30,

α = aT /L , γ = (g − hT )/L . (12)

g1, g2, and g3 are controller’s constants, Γ̄1 and Γ̄2 are
nondimensional atomic force constants, α is the nondi-
mensional distance between tip and microbeam fixed
end, γ is the nondimensional gap distance, and ν is the
nondimensional damping coefficient. A set of homo-
geneous boundary conditions completes the problem
formulation

w(0, τ ) = 0, ws(0, τ ) = 0,

wss(1, τ ) = 0, wsss(1, τ ) = 0. (13)

As proposed for the uncontrolled case [6], a single-
mode reduction is applied to the controlled vertical dis-
placement variable w(s, τ ) and to the reference vertical
displacement wref (s, τ )

w(s, τ ) = q1(τ )Φ1(s)

wref (s, τ ) = qref1(τ )Φ1(s) (14)

where the basis function is that of a clamped-spring
beam. The Galerkin procedure leads to the following
governing equations

I1q1ττ + I11(νq1τ +ω2
1q1)+ I2(Wττ +νWτ ) + I3q3

1

+ I4q1

(
q2

1τ + q1ττ q1

)
= q2

1 q1τ (g1 I41 + g2 I7)

+ 1

2
q3

1 I41g3−Γ̄1Φ1(α)

(
1

(γ +q1Φ1(α)+B−ξs)
2

)

+
(

q1 I5 + 1

2
q3

1 I6

)
(Uττ + g1Uτ + g3U )

I2ξτ = I11k
(
qref1 − q1

)
(15)

where Ii j are the same of the uncontrolled case reported
in “Appendix 1,” and the repulsion interaction Γ̄1 has
been neglected due to the noncontact regime of opera-
tion of the AFM.

New variables x(τ ) = q1(τ )Φ1(α)/γ , z = ξ/γ ,
and xref (τ ) = qref1(τ )Φ1(α)/γ are defined, which are
rescaled by the timescale tN = ω1τ , to obtain the final
form of the controlled system equations
(

1 + α2x2
)

ẍ +
(
α1 + α2 ẋ2 + α3x2

)
x

= − Γ1(
1 + x + Vg + z − zs

)2 −
(
ρ1 + ρ2x2

)
ẋ

− (
V̈g +kg

(
ẋref − ẋ

)+ν1
(
V̇g +kg

(
xref −x

)))
ν2

+
(
μ1x + μ2x3

) (
Üg + η1U̇g + η2Ug

)

ż = kg
(
xref − x

)
(16)

where

α1 = I11

I1
, α2 = γ 2 I4

Φ1(α)I1
,

α3 = γ 2

Φ2
1 (α)ω2

1

(
I3

I1
+ g3 I41

2I1

)
,

Γ1 = Γ̄ − 1
Φ2

1 (α)

γ 3ω2
1 I1

, μ1 = I5γ

I1
, μ2 = I6γ

3

2Φ2
1 (α)I1

,
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ρ1 = ν I11

ω1 I1
, ρ2 = γ 2

Φ − 12(α)

(
g1 I41

ω1 I1

g2 I7

ω1 I1

)
,

η1 = g1

ω1
, η2 = g3

ω1
, ν1 = ν

ω1
, ν2 = I2Φ1(α)

I1
,

Vg = W

γ
, Ug = U (τ )

γ
, zs = ξs

γ
, kg = I11k

Φ1(α)I2ω1
.

(17)

x and z are the transverse displacement variable and the
newly inserted control variable, respectively; α1 and α2

represent linear and nonlinear geometric terms; ρ1 is
the linear damping coefficient, and Γ1 is the attractive
atomic interaction coefficient. Ug and Vg are horizontal
and vertical excitations, respectively, that are supposed
to be harmonic (Ug = U sin(ωut), Vg = V sin(ωvt));
η1, η2, and ρ2 are feedback control parameters related
to the time-dependent horizontal scan and the non-
linear correction to the damping term, respectively;
the coefficient α3 of the cubic stiffness term is also
affected by the horizontal control gain. Compared with
the uncontrolled system equation [6], it is evident that,
as expected, the feedback control acts on the system
by modifying the terms related to the tip-sample dis-
tance, which are the nonlinear atomic interaction term
and the vertical vibration V . Finally, kg is the exter-
nal feedback control parameter, and xref represents the
periodic reference response of the uncontrolled system
and thus can be expressed as the sum of a mean x̄ref

and a time-dependent oscillating component x̃ref (t)

xref = x̄ref + x̃ref (t) (18)

2.2 Equilibrium analysis and stability of fixed points

The equilibrium analysis of the controlled system
involves the elimination of the explicit time-dependent
excitations Ug = Vg = 0 together with the oscillating
reference position x̃ref (t) = 0 so that xref = x̄ref

ẋ = y

ẏ = − 1

1 + α2x2

((
α1 + α2 y2 + α3x2

)
x

+ Γ1

(1 + x + z − zs)
2 +

(
ρ1 + ρ2x2

)
y

+ (−y + ν1
(
x̄ref − x

))
kgν2

)

ż = kg
(
x̄ref − x

)
(19)

To obtain the system fixed points, the velocities are
set equal to zero (ẋ = ẍ = ż = 0); consequently,

x = x̄ref , and z = zs is the arbitrary displacement from
the reference position. The controlled system becomes

(1 + x)2
(
α1 + α3x2

)
x + Γ1 = 0 (20)

whose solution xe
(
x̄ref , zs

)
points out that the system

equilibria are not influenced by the feedback control
parameter kg .

For a general choice of the parameters, the five solu-
tions are obtained from a quintic polynomial which is
the same as that of the uncontrolled system; among
them, only two solutions are acceptable and correspond
to the upper stable fixed point and to the unstable one
of the uncontrolled system [6].

The stability of the system fixed points involves
the study of the Jacobian matrix at the equilibrium
xe

(
x̄ref , zs

)
:

Jxe =
⎡
⎢⎣

0 1 0

a21 a22 a23

−kg 0 0

⎤
⎥⎦ (21)

where

a21 =
(

1 + α2 x̄2
ref

)−2 ((
1 + α2 x̄2

ref

)
α1

− x̄2
ref

(
3 + α2 x̄2

ref

)
α3

+ 2Γ1
(
1 + x̄ref

)−3 (
1 + α2 x̄ref

(
1 + 2x̄ref

))

+ ν1ν2kg

(
1 + α2 x̄2

ref

))

a22 =
(

1 + α2 x̄2
ref

)−1 (
ρ1 + ρ2 x̄2

ref − ν2kg

)

a23 = 2Γ1

(
1 + α2 x̄2

ref

)−1 (
1 + x̄ref

)−3 (22)

The coefficients of its characteristic polynomial
pJxe

(λ) = λ3 + C1λ
2 + C2λ + C3 = 0 are

C1 = −tr
(

pJxe

) = −a22

C2 = Z
(

pJxe

) = −a21

C3 = −det
(

pJxe

) = −a23kg

�2 = C1C2 − C3 (23)

The equilibrium solutions are asymptotically stable if
and only if
{

C j > 0, j = 1, 2, 3

�2 > 0
(24)

Due to the dependence on the feedback parameter kg ,
the stability analysis of the two fixed points has been
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Fig. 3 Stability regions of the controlled fixed points as a func-
tion of the feedback control parameter kg and the atomic interac-
tion parameter Γ1. Gray area = stable region, red area = unstable
region. (Color figure online)

carried out in function of both Γ1 and kg for the fol-
lowing set of parameters values

α1 = 1, α2 = 0, α3 = 0.1, ρ1 = 0.001, ρ2 = 0,

ν1 = 0.01, ν2 = 0.01, μ1 = 1.5708, μ2 = 0,

η1 = 0, η2 = 0, zs = 0.01 (25)

corresponding to those chosen for the uncontrolled sys-
tem [6]. The reported results are evaluated numerically,
with the values of the equilibrium position xe

(
x̄ref , zs

)
obtained as solution of the corresponding uncontrolled
system. Figure 3 shows the summarized contributions
of the coefficients of the characteristic polynomial (23)
governing the stability of the system stable equilibrium
solution together with the ones related to the unsta-
ble equilibrium branch. The �2 coefficient governs
the fixed point stability, reducing it as the value of the
feedback control parameter increases, up to the upper
boundary of kg = 0.1 for which both �2 and C1 change
their sign making the fixed point unstable. As regards
the equilibrium that corresponds to the unstable equi-
librium of the uncontrolled system, it remains unstable
over the whole domain even after the control introduc-
tion.

For the parameters choice (25) and for Γ1 = 0.1,
which corresponds to the value used for the further
numerical analyses, the asymptotic stability of the equi-
librium solution occurs for 0 < kg < 0.00223. The
three eigenvalues which are solution of the characteris-
tic polynomial pJxe

can be studied to point out the pos-
sible bifurcation scenarios of the system fixed points.
As they turn out to be λ1,2 = Re1,2±iIm1,2, λ3 = Re3,

it results that a Hopf bifurcation occurs for Re1,2 = 0,
that is, �2 = 0; as a consequence, the equilibrium sta-
bility of the controlled system is now governed by a
Hopf bifurcation locus, which occurs for considerably
lower values of the atomic interaction parameter with
respect to the saddle-node locus which governed the
stability of the uncontrolled system.

3 Asymptotic analysis

To validate the applied feedback control technique, and
to study the system nonlinear dynamics around the
previously obtained fixed point close to primary reso-
nance, the method of multiple scales [31] is applied to
the system (16). To this aim, the equations of motions
are analyzed around the reference position (xref , zs),
that is, y = x − xref = x − x̄ref − x̃ref and p = z − zs :

ÿ = − 1(
1 + α2(y + x̄ref + x̃ref )2

)

× (
α1+α2 ẏ2+α3(y+ x̄ref + x̃ref )

2) (y+ x̄ref + x̃ref )

+ Γ1(
1+(y+ x̄ref + x̃ref )+Vg + p

)2

+ (
ρ1 + ρ2(y + x̄ref + x̃ref )

2) (
ẏ + ˙̃xref

)

+ (
V̈g − kg ẏ + ν1

(
V̇g − kg y

))
ν2

− (
μ1(y + x̄ref + x̃ref ) + μ2(y + x̄ref + x̃ref )

3)

× (
Üg + η1U̇g + η2Ug

)

ṗ = −kg y (26)

with Vg = V sin(ωvt), Ug = U sin(ωut) and account-
ing for (18).

3.1 Multiple-scale formulation

The multiple-scale method is employed by introducing
four independent timescales, i.e., the fast one, T0, and
the slower ones, T1, T2, T3:

T0 = t, T1 = εt, T2 = ε2t, T3 = ε3t (27)

where ε is a small dimensionless ordering parameter
and, consistently, expressing the time derivatives as

d/dt = D0 + εD1 + ε2 D2

d2/dt2 = D2
0 +2εD0 D1+ε2 D2

1 +2ε2 D0 D2+2ε3 D1 D2

(28)
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where Di = ∂/∂Ti . Both displacement y and target
distance p are scaled as small perturbations of the ref-
erence position

y(t) = εy1(T0, T1, T2, T3) + ε2 y2(T0, T1, T2, T3)

+ ε3 y3(T0, T1, T2, T3) + ε4 y4(T0, T1, T2, T3)

p(t) = εp1(T0, T1, T2, T3) + ε2 p2(T0, T1, T2, T3)

+ ε3 p3(T0, T1, T2, T3) + ε4 p4(T0, T1, T2, T3)

(29)

From Sect. 2.2, the atomic interaction term proves to be
directly involved in the definition of the system equi-
libria, while the other nonlinear terms can be seen as
disturbances of these states. Moreover, it is worth not-
ing that typical AFM dimensions and noncontact oper-
ating conditions in air and low vacuum have been doc-
umented to yield the range of values of dimensionless
parameters considered in this analysis (25) ([32,33],
details in discussion of Q-factors in [34]). Thus, analy-
ses are restricted to weak damping without considering
large damping for operation in water [35] or very small
damping for operation in ultrahigh vacuum [36].

Consequently, Γ1 is set to appear at the generating
order, while the other system parameters are rescaled to
describe small base excitation amplitude (V → ε3V̂ ),
small scan amplitude (U → ε3Û ), small damping (ρ1

→ ε2ρ̂1, ρ2 → ε2ρ̂2, ν1 → ε2ν̂1, ν2 → ε2ν̂2),
and small control (kg → ε2k̂g). Two detuning terms
are also introduced to express the nearness of exciting
frequencies to primary resonance

ε2σu = ωu − ω1 = ω1(�u − 1),

ε2σv = ωv − ω1 = ω1(�v − 1)

where ω1 is the system natural frequency and �i =
ωi/ω1, i = u, v.

Note that the feedback control parameter kg is
ordered in such a way to come into play within the per-
turbation scheme at the same order as the one where the
other system nonlinearities appear, i.e., the third order.
To evaluate the effect of control on the system asymp-
totic response, therefore, the perturbation analysis is
carried out up to the fourth order.

It is worth underlining here that the reference solu-
tion x̃ref in (26) is the modulated response of the uncon-
trolled system, and in view of a perturbation analysis, it
can be seen as the solution of the perturbed uncontrolled
system, which has been obtained, up to the third order,
by [6] with the same choice of variables and parame-
ters scaling. Reference is made to the relevant analysis

and solution for the sake of comparison: this requires
adding here a fourth-order perturbation equation, to
ensure that the controlled amplitude becomes directly
dependent on the detuning parameter, i.e., to obtain a
direct relationship between frequency and amplitude
of the controlled response (to be solved numerically),
besides indirectly accounting for it via the underlying
uncontrolled amplitude.

Hence, x̃ref (t) can be considered, and thus scaled,
as a further variable

x̃ref (t)

= εx̃ref1(T0, T1, T2, T3) + ε2 x̃ref2(T0, T1, T2, T3)

+ ε3 x̃ref3(T0, T1, T2, T3) + ε4 x̃ref4(T0, T1, T2, T3)

(30)

For the controlled system, after pre-multiplication by
denominator, the following set of perturbation equa-
tions is obtained as:

order ε0 :
Γ1 + x̄ref (1 + x̄ref )

2(α3 x̄2
ref + α1) = 0 (31)

order ε1 :
D2

0 y1 + ω2
1 y1 + D2

0 x̃ref1 + ω2
1 x̃ref1 + C11 p1 = 0

D0 p1 = 0 (32)

order ε2 :
D2

0 y2 + ω2
1 y2 + D2

0 x̃ref2 + ω2
1 x̃ref2 + C11 p2

= N21(y1) + N22(x̃ref1) + N23(p1) + N24(y1, x̃ref1)

+ N25(y1, p1) + N26(p1, x̃ref1)

D0 p2 = −D1 p1 (33)

order ε3 :
D2

0 y3 + ω2
1 y3 + D2

0 x̃ref3 + ω2
1 x̃ref3 + C11 p3

= N31(y1, y2) + N32(x̃ref1, x̃ref2) + N33(p1, p2)

+ N34(y1, y2, x̃ref1, x̃ref2) + N35(y1, y2, p1, p2)

+ N36(p1, p2, x̃ref1, x̃ref2) + N37(y1, x̃ref1, p1)

− Ccu cos(ω1T0 + σu T2 + φu)

− Csv sin(ω1T0 + σvT2)

− Csu sin(ω1T0 + σu T2 + φu)

D0 p3 = −D1 p2 − D2 p1 − k̂g y1 (34)

order ε4 :
D2

0 y4 + ω2
1 y4 + D2

0 x̃ref4 + ω2
1 x̃ref4 + C11 p4

= N41(y1, y2, y3) + N42(x̃ref1, x̃ref2, x̃ref3)

+ N43(p1, p2, p3)

+ N44(y1, y2, y3, x̃ref1, x̃ref2, x̃ref3)
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+ N45(y1, y2, y3, p1, p2, p3)

+ N46(p1, p2, p3, x̃ref1, x̃ref2, x̃ref3)

+ N47(y1, y2, x̃ref1, x̃ref2, p1, p2)

D0 p4 = −D1 p3 − D2 p2 − D3 p1 − k̂g y2 (35)

where expressions of Ci j coefficients and Ni j terms
are reported in “Appendix 3” of [37]. It is worth not-
ing that N21(y1) and N22(x̃ref1) terms have the same
structure, as well as N31(y1, y2) and N32(x̃ref1, x̃ref2)

terms, N41(y1, y2, y3) and N42(x̃ref1, x̃ref2, x̃ref3) terms,
N35(y1, y2, p1, p2) and N36(x̃ref1, x̃ref2, p1, p2) terms,
and N45(y1, y2, y3, p1, p2, p3) and N46(x̃ref1, x̃ref2,

x̃ref3, p1, p2, p3) terms. This is due to the fact that the
perturbed y and the reference x̃ref variables appear in
all of the terms of (26) simultaneously, apart from some
terms related to the forcing Vg , which, in any case, are
scaled at higher orders. At each order, furthermore, all
the terms of the uncontrolled system can be detected
in the controlled system (32)–(35), as functions of x̃ref

and y; the ones related to x̃ref vanish identically since
x̃ref is the solution for the uncontrolled system. As a
consequence, the first equation, at each order, has the
same structure as that in [6], apart from replacing x̃ref

with y, including the x̃ref y coupling terms, and exhibit-
ing terms ensuing from the target distance variable p.
Hence, neglecting terms related to x̃ref1, solutions of
system (32) are

p1 = B(T1, T2, T3)

y1 = A(T1, T2, T3)e
iω1T0

− C11/ω
2
1 B(T1, T2, T3) + c.c. (36)

with A(T1, T2, T3) and B(T1, T2, T3) undetermined
functions of the slow timescales and c.c. complex con-
jugate terms (the overbar will denote the complex con-
jugate and i is the imaginary unit). Solutions (36) high-
light that p1(T1, T2, T3) is a modulated nontrivial equi-
librium solution, while y1(T1, T2, T3) is a harmonic
solution modified by the equilibrium position of p1.

The solution of the perturbation equations up to the
fourth order (33)–(35) is reported in “Appendix 2” with
the relevant solvability conditions and particular solu-
tions at each order, for both the displacement y and the
target distance p.

Once obtained the expressions of D j A, D j B, ( j =
1, 3) from Eqs. (46), (49), (52), (55), (58), and (61) of
“Appendix 2,” the usual reconstitution procedure [38]
is applied, and the amplitude derivatives with respect
to time t are obtained from (28)

Ȧ = εD1 A + ε2 D2 A + ε3 D3 A

Ḃ = εD1 B + ε2 D2 B + ε3 D3 B (37)

The ε parameter is completely reabsorbed through a
backward rescaling, and the obtained amplitude mod-
ulation equations (AMEs, or bifurcation equations) are
(again for the βi see [37])

Ȧ = +β6 AB+β9 A+ β5 Aun B+β8 B cos (σut+φu)

− β10 B sin (σut + φu) + β11 B cos (σvt)

+ i
(

Āun

(
A2 (β1 B+β4)+2AAun (β1 B+β4)

+β1 A2
un B

)
+ A2 Ā (β1 B + β4) + 2β4 AĀAun

+ AB
(
2β1 ĀAun + B (β2 B + β3) + β7

)

+ Aun
(
B

(
β1 ĀAun + B (β2 B + β3) + β7

)

+β4 ĀAun
) + B (β8 sin (σut + φu)

+β10 cos (σut + φu) + β11 sin (σvt)))

Ḃ = 2C214kg

ω2
1

(
AĀun + AĀ + ĀAun

)

+ C212kg

ω2
1

B2 + C11kg

ω2
1

B (38)

Note that the complex amplitudes A and B are of order
ε (A = εA, B = εB), as they refer to the displacement
y and the target distance p, respectively.

To write the system (38) in Cartesian coordinates,
it has to be transformed in an autonomous form, so
the presence of resonant external vertical excitation Vg

or resonant parametric horizontal excitation Ug has to
be taken into account separately. For the horizontally
forced case (Vg = 0), by means of the coordinates
transformations,

A = 1

2
( j (t) + i n(t)),

Ā = 1

2
( j (t) − i n(t)), B = b(t),

Aun = 1

2
( jun(t) + i nun(t)),

Āun = 1

2
( jun(t) − i nun(t))

system (38) results in

j̇(t) = −β2n(t)b(t)3 − β2nun(t)b(t)3 − β3n(t)b(t)2

− β3nun(t)b(t)2 − β1

4
jun(t)2nun(t)b(t)

− β1

4
nun(t)3b(t)+β5 jun(t)b(t)+β6 j (t)b(t)

− β7n(t)b(t) − β7nun(t)b(t) + 2β8b(t)
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− β1

4
j (t)2nun(t)b(t) − 3β1

4
n(t)2nun(t)b(t)

− β1

2
j (t) jun(t)n(t)b(t) − β1

4
jun(t)2n(t)b(t)

− 3β1

4
n(t)nun(t)2b(t) − β1

4
j (t)2n(t)b(t)

− β1

2
j (t) jun(t)nun(t)b(t)

− β1

4
n(t)3b(t) + β9 j (t) − β4

4
j (t)2nun(t)

− β4

4
jun(t)2n(t) − 3

β4

4
n(t)2nun(t)

− 3
β4

4
n(t)nun(t)2 − β4

4
j (t)2n(t)

− β4

2
j (t) jun(t)n(t) − β4

2
j (t) jun(t)nun(t)

− β4

4
n(t)3 + (ω1�u − ω1)n(t) (39)

ṅ(t) = β2 j (t)b(t)3 + β2 jun(t)b(t)3 + β3 j (t)b(t)2

+ β3 jun(t)b(t)2 + β1

4
jun(t)3b(t)

+ β1

4
jun(t)nun(t)2b(t) + β5nun(t)b(t)

+ β6n(t)b(t) + β7 j (t)b(t)

+ β7 jun(t)b(t) + 2β10b(t)

+ 3
β1

4
j (t)2 jun(t)b(t) + β1

4
jun(t)n(t)2b(t)

+ β1

2
j (t)n(t)nun(t)b(t)+3

β1

4
j (t) jun(t)

2b(t)

+ β1

4
j (t)nun(t)

2b(t) + β1

4
j (t)3b(t)

+ β1

4
j (t)n(t)2b(t) + β1

2
jun(t)n(t)nun(t)b(t)

+ β9n + 3
β4

4
j (t)2 jun(t) + 3

β4

4
j (t) jun(t)

2

+ β4

4
j (t)nun(t)

2 + β4

4
jun(t)n(t)2

+ β4

4
j (t)3+ β4

4
j (t)n(t)2+ β4

2
j (t)n(t)nun(t)

+ β4

2
jun(t)n(t)nun(t) + (ω1 − ω1�u) j (t)

ḃ(t) = C212kg

ω2
1

b(t)2 + C11kg

ω2
1

b(t) + C214kg

2ω2
1

j (t)2

+ C214kg

ω2
1

j (t) jun(t) + C214kg

2ω2
1

n(t)2

+ C214kg

ω2
1

n(t)nun(t)

where j (t) and n(t) are the real and imaginary parts of
the complex amplitude A, respectively, and jun(t) and
nun(t) are the real and imaginary parts of the reference
complex amplitude Aun , respectively.

The asymptotic system is completed by the pertur-
bation equations furnished by the analysis of the uncon-
trolled system, for which the solvability condition at the
fourth order implies that D3 Aun = 0, thus not modify-
ing the amplitude equations obtained in [6]. In Carte-
sian coordinates, they result

j̇un(t) = + Csu

2ω1
− C35

2
jun(t) + nun(t)ω1 (�u − 1)

− C301

8ω1

(
jun(t)2nun(t) + nun(t)3

)

ṅun(t) = + Ccu

2ω1
− C35

2
nun(t) − jun(t)ω1 (�u − 1)

+ C301

8ω1

(
nun(t)2 jun(t) + jun(t)3

)
(40)

Similar equations are obtained in the vertically forced
case.

Finally, the expression of the asymptotic solution
of (26) is obtained by remembering that it has been
proposed as a series expansion of y (29). Thus, con-
tributions up to the third order can be reconstituted by
making use of (36), (47), (50), (53), (56), and applying
a backward rescaling and the transformation to Carte-
sian coordinates. The steady-state responses result

y = fy0 + fyc1 cos(ω1t) + fys1 sin(ω1t)

+ fyc2 cos(2ω1t) + fys2 sin(2ω1t)

+ fyc3 cos(3ω1t) + fys3 sin(3ω1t)

p = f p0 + f pc1 cos(ω1t) + f ps1 sin(ω1t) (41)

where coefficients fhkl are reported in “Appendix 4.”

3.2 Stability analysis

To analyze the stability of the asymptotic solution,
the Jacobian matrix of the complete system ((39)
and (40)) at the desired dynamic equilibrium ae =
( jun, nun, j, n, b) is studied, as done previously in Sect.
2.2 for the system fixed points

Jae =

⎡
⎢⎢⎢⎢⎢⎢⎣

c11 c12 c13 c14 c15

c21 c22 c23 c24 c25

c31 c32 c33 c34 c35

c41 c42 0 0 0

c51 c52 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(42)
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where the terms chk , h, k = 1, ..., 5 of the Jaco-
bian matrix are reported in “Appendix 3.” Note that
when the system response settles to the reference one,
i.e., j = n = b = 0, the controlled problem (which
corresponds to the first three lines of (42)) and the
uncontrolled one (last two lines of (42)) are decoupled,
so the Routh–Hurwitz stability criterion can be applied
only to the controlled part. Thus, the stability analysis is
reduced to the study of the coefficients of the character-
istic polynomial pJae

(λ) = λ3 + P1λ
2 + P2λ+ P3 = 0

where

P1 = −tr (p) = −c13 − c24 − c35

P2 = Z (p) = −c14c23 − c15c33 − c25c34 + c24c35

+ c13c24 + c13c35

P3 = −det (p) = c15 (c24c33 − c23c34)

+ c14 (c23c35 − c25c33)

+ c13 (c25c34 − c24c35)

�2 = P1 P2 − P3 (43)

The asymptotic stability is guaranteed if and only if

{
Pi > 0, i = 1, 2, 3

�2 > 0
(44)

However, note that the coefficients in (43) incorporate
a complex implicit parameter description for the equi-
librium position as ensuing from the solution of Eq.
(40). In light of this, in the following section, the sta-
bility of the asymptotic system will be investigated by
numerically solving the five equation system, so as to
simultaneously obtain the controlled and the reference
amplitudes.

4 Validity of the asymptotic solution
and effectiveness of control

To check the validity of the asymptotic solution, AMEs
of the uncontrolled system (40) are added to the con-
trolled ones (39). Denoting with a = √

j2 + n2 and
aun = √

j2
un + n2

un , the amplitudes of the trivial solu-
tion (a, b) = (0, 0) of the controlled system and of
the uncontrolled one, respectively, Fig. 4 highlights the
effectiveness of the control technique in setting the sys-
tem response to the reference one, besides furnishing
the asymptotic approximation of the latter.

Once verified the effectiveness of control as fur-
nished by the asymptotic solution, an additional check
is developed comparing the asymptotic solution—as
obtained with the enlarged (i.e., controlled) system—
with the results obtained via numerical integration of
the system Eq. (16), for the vertically and horizontally
forced system, separately. Note that to properly com-
pare the stationary responses of the asymptotic Eqs.
(39) and (40) with the ones obtained from the ordinary
differential system (16), the definition of the asymptotic
variables has to be recalled, to obtain x = y+x̄ref +x̃ref

and z = p + zs . Here, y and p are the controlled solu-
tions reported in (41), x̄ref and zs are the system equi-
librium positions obtained in Sect. 2.2, and x̃ref is the
time-dependent part of the reconstituted reference solu-
tion. Similarly, when comparing the asymptotic and
numerical amplitudes, the first one is furnished by the
sum of the controlled amplitude a (obtained from sys-
tem (39)) and the reference amplitude aun (obtained
from system (40)), while the latter is evaluated from
(xmax − xmin) /2. For what concerns the control vari-
able z, the numerical results have to be manipulated by

(a) (b) (c)

Fig. 4 Asymptotic solutions for the parametrically forced system at Ug = 0.0001 and kg = 0.001: controlled amplitudes a, b (a) and
uncontrolled amplitude aun (b)
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Fig. 5 Frequency–response curve: asymptotic (red line) and numerical (black line) solutions for the parametrically forced system at
Ug = 0.0001 and kg = 0.001. (Color figure online)

Fig. 6 Frequency–response curve: asymptotic (red line) and numerical (black line) solutions for the externally forced system at
Vg = 0.0001 and kg = 0.001. (Color figure online)

evaluating the mean value (zmax + zmin) /2, due to the
fact that the asymptotic amplitude b represents the cor-
rection to the equilibrium position zs (the generating
solution of b is constant, while the one corresponding
to the a amplitude is oscillating, see (36)).

4.1 Frequency–response curves

Figures 5, 6 are obtained for kg = 0.001 and demon-
strate that the asymptotic solutions (red lines) are in

very good agreement with the behavior of the original
ODEs (black lines). It is interesting to point out that
the amplitude of the system response under horizon-
tal excitation is half the one obtained with the vertical
force; this is due to the fact that the primary resonance
is the most relevant one for an externally driven sys-
tem, while the parametric excitation affects mainly the
order −1/2 subharmonic resonance.

Figure 7a confirms the good concordance of results
by the comparison between frequency–response curves
obtained for the AMEs and for the ODEs at a feed-
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Fig. 7 Comparison between results obtained from ODEs system (black) and from AMEs system (red) for U = 0.0001 and kg = 0.002
(a) and for U = 0.001 and kg = 0.001 (b). (Color figure online)

back control value close to the limit value kg = 0.002
(see Sect. 2.2). The reported curves almost overlap, as
well as the very narrow region of instability confined
by a couple of transcritical bifurcations, underlining
the capability of the asymptotic system to grasp the
changes in the response stability.

Also for an increased forcing amplitude value U =
0.001 (Fig. 7b), the asymptotic system provides good
results, even if slight differences occur around the top
of the resonance curve, where the high value of the
response amplitude does not fulfill the ordering of the
asymptotic system (i.e., a = εa).

4.2 Bifurcation structure

A more systematic analysis of the accuracy of the
asymptotic solution in terms of response and its sta-
bility is made by looking at the bifurcation behavior
with varying system parameters. First, the effect of the
feedback control parameter is analyzed, by referring to
the horizontally forced system. The behavior chart in
Fig. 8a shows the stability threshold of the bounded ref-
erence solution. The results show that the asymptotic
system loses its stability through a Hopf bifurcation,
except for a confined region around the resonance peak,
for which instability arises via a transcritical bifurca-
tion (see frequency–response curve of Fig. 7a). It is
evident the similarity between the qualitative behavior
of the analyzed system and the same results obtained

for the original system of ODEs reported in Fig. 8b, just
considering that a torus bifurcation of a periodic solu-
tion corresponds to a Hopf bifurcation of the relevant
amplitude asymptotic solution. The good agreement
of the results concerns also the quantitative aspect, as
shown in Fig. 8c, with an error on the amplitude of about
2 %. Note that, away from nearly perfect resonance,
the kg limit value corresponding to the Hopf (Torus)
bifurcation is the same as the one obtained studying
the asymptotic stability of the equilibrium solution in
Sect. 2.2 (i.e. kg = 0.00223).

To further confirm the accuracy of the asymptotic
approximation, while at the same time getting hints on
the variety of system regular and nonregular responses,
additional bifurcation diagrams, for increasing values
of the feedback control parameter kg and of the forc-
ing amplitude U , are reported in Figs. 9, 12, together
with the corresponding results obtained for the original
ODEs, along with some sample response (Figs. 10, 11,
13).

The evolution of the asymptotic response in terms
of maximum displacement (left) and target distance
(right) amplitudes, as a function of kg , is reported in
Fig. 9a at a forcing frequency value close to the pri-
mary resonance Ωu = 0.9999; comparison has to be
made with the ODEs results (Fig. 9b). Both the asymp-
totic system and the original one exhibit the presence
of a main periodic solution P1 which is present also
in the uncontrolled case (i.e., for kg = 0) and which
is properly controlled by the system (the control vari-
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Fig. 8 Behavior charts in the �u-kg (ωu-kg) plane around pri-
mary resonance at U = 0.0001 for the asymptotic system (a) and
for the original ODEs system (b). Comparison between asymp-
totic (red curve) and original system (black curve) results (c). TR:

torus bifurcation, HB: Hopf bifurcation, T: transcritical bifurca-
tion, gray region: stable region (bounded reference solution).
(Color figure online)

able z, with amplitude b, settles to the desired position
zs = 0.01, see also Fig. 10). At kg = 0.00193, a trans-
critical bifurcation T makes such solution unstable and
brings to the arise of two periodic solutions P1′ and P1′′
which are typical of the controlled system while do not
exist in the uncontrolled reference one, and for which
the control variable z does not reach the expected posi-
tion zs (see the right side of Fig. 9a, b). Yet, even if
they do not represent the goal of the control procedure,
also in this case, an excellent agreement between the
results of the two systems is observed, not only about
the qualitative behavior of the response but also about
the detection of the bifurcation events responsible for
changes in stability. Moreover, in order to complete the
description of the system responses, phase portraits and

Poincaré maps of the three 1-period solutions obtained
from the numerical system (16) (black) and from the
steady-state responses (41) of the asymptotic system
(red) are compared in Figs. 10 and 11. As regards the
P1 solution, Fig. 10 shows the overlapping of the results
and confirms the ability of the control procedure in set-
ting the response at the reference value zs , while for
the new P1′ and P1′′ solutions, Fig. 11 highlights that
the concordance between numerical and asymptotic
results is affected by the increased value of the feed-
back control parameter kg and by the transition of the
z variable from a constant to a periodic behavior. How-
ever, the outcomes reveal satisfactory results also from
a quantitative viewpoint, just considering the figures
scale.
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(a)

(b)

Fig. 9 Bifurcation diagram at U = 0.0001 for varying kg
at �u = 0.9999 for the asymptotic system (a) and at ωu =
0.8358 (corresponding to �u = 1) for the ODEs system (b).
S1,S1’,S1”: equilibrium solutions in the AMEs which corre-
spond to P1,P1’,P1” periodic solutions in the ODEs; C’,C”: limit

cycles in the AMEs which correspond to quasiperiodic solutions
in the ODEs; HB: Hopf bifurcation in the AMEs which cor-
respond to torus bifurcation (TR) in the ODEs; T: transcritical
bifurcation; SN: saddle-node bifurcation. (Color figure online)

Furthermore, power spectra in Figs. 10 and 11 show
that the reported 1-period solutions are dominated by
the forcing frequency ( f1 = ωu/2π ∼= 0.133), with
also the presence of its superharmonics ( f2 = ωu/π ∼=
0.266 and f3 = 3ωu/2π ∼= 0.399). Note that the
results obtained for the asymptotic responses (red lines)
are able to depict the presence of the superharmonics
peaks in the x variable, while can detect only the dom-
inating peak in the z variable, as it was reasonable to
expect by looking at their expressions (41) where the
contributions of the double and triple frequencies are
present only in the x case.

To analyze the validity of the asymptotic response
as a function of the forcing amplitude, bifurcation dia-

grams for increasing U are reported in Fig. 12 at a
forcing frequency ωu = 0.82 (corresponding to Ωu =
0.98). It is worth underlining here that the asymptotic
system allows one to select and follow also the evo-
lution of the original system quasiperiodic responses,
which appear as periodic solutions arisen from the Hopf
bifurcations (red curves C in Fig. 12 and C′ and C′′ in
Fig. 9a). This is the case, for example, of the quasi-
periodic solution of Fig. 13, for an amplitude value of
∼= 0.012; the time series obtained from the ordinary dif-
ferential system (16) reported in Fig. 13a depict qua-
siperiodic beats with a long period T = 651.5 that
corresponds to a frequency f = 0.0015, detected in
the power spectra of Fig. 13c very close to the zero
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Fig. 10 Comparison between asymptotic (red) and numerical (black) responses at fundamental resonance for the P1 (S1) solution at
kg = 0.0015. (Color figure online)

value. Even for these solutions, the asymptotic system
response, represented by the red graphics of Fig. 13b,
c, proves to be able to properly reproduce the system
behavior, both from a qualitative and a quantitative
viewpoint.

As a final remark, it is worth noting that the results
reported in Fig. 8 are qualitatively similar to those pre-
sented by [23], obtained for a simple model of tap-
ping AFM subject to the same external feedback con-
trol technique and operating in the noncontact region.
Figures 7 and 10 of [23], in fact, show the stability
thresholds of the externally forced system around pri-
mary resonance, obtained from the approximate aver-
aged system and from numerical computations, respec-
tively. The present detection of the transcritical and
Hopf bifurcation thresholds for both the horizontal and
the vertical excitation (latter results not reported) con-
firms the goodness of the obtained outcomes and allows
one to reasonably assume that the described behavior
is typical of AFM systems in noncontact regime under
the presented kind of feedback control and irrespec-

tive of the considered resonant (parametric or external)
excitation.

5 Closing remarks

An external feedback control has been introduced
into the continuum formulation of a noncontact AFM
microcantilever, with the aim of avoiding possible
unstable motions of the system. The control consists of
maintaining the microcantilever vibration close to the
reference one which corresponds to an operationally
suitable response obtained for the uncontrolled system
with the same set of parameter values. Accordingly, the
uncontrolled system proposed by [6] has been enriched
by the addition of a new variable in the distributed para-
meter system equations. This variable represents the
distance between the microcantilever fixed boundary
and the horizontal reference axis and modifies the terms
dependent on the tip-sample distance, i.e., the nonlinear
atomic interaction term and the vertical boundary con-
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(a)

(b)

Fig. 11 Comparison between asymptotic (red) and numerical (black) responses at fundamental resonance: P1′ (S1′) solution (a) and
P1′′ (S1′′) solution (b) at kg = 0.002. (Color figure online)
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(a)

(b)

Fig. 12 Bifurcation diagram at kg = 0.001 for varying U at
Ωu = 0.98 (corresponding to ωu = 0.82) for the asymptotic
system (a) and for the ODEs system (b). S1: equilibrium solu-
tion in the AMEs which correspond to P1 periodic solutions in
the ODEs; C: limit cycle in the AMEs which correspond to qua-

siperiodic solutions in the ODEs; HB: Hopf bifurcation in the
AMEs which correspond to torus bifurcation (TR) in the ODEs;
T: transcritical bifurcation; SN: saddle-node bifurcation. (Color
figure online)

ditions. A single-mode reduction based on the Galerkin
procedure has been implemented to obtain the equa-
tions of motion governing the dynamics of the con-
trolled model.

The equilibrium analysis reveals that the control
does not affect the existence of equilibrium states but
significantly influences their stability by a substantial
reduction in the stable range due to the presence of a
new threshold for a Hopf bifurcation.

The validation of the applied feedback control tech-
nique and the investigation of the nonlinear dynamics
around the desired fixed point close to primary reso-
nance have been carried out by means of the method
of multiple scales, which yields a reduced set of evolu-

tion equations that approximate the slow-time ampli-
tudes of motion. A very good correspondence between
asymptotic prediction and system response obtained
via numerical integration, also for quite high values of
the most relevant system parameters, demonstrates the
effectiveness of the control technique in setting the sys-
tem response to the reference one. This confirms that
the control method represents a simple and efficient
procedure for reliable AFM sample surface measure-
ment in the weakly nonlinear dynamic regime.

Furthermore, system parameters stability maps and
bifurcation diagrams depicting response amplitude
as a function of the feedback control parameter kg

demonstrate the quantitative accuracy of the asymp-
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(a)

(b)

(c)

Fig. 13 Quasiperiodic solutions at ωu = 0.82 (∼= Ωu = 0.98) and U ∼= 0.012 obtained from the numerical system (a) and from the
asymptotic system (b), and comparison between the relevant power spectra (c). (Color figure online)
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totic solutions and highlight novel peculiarities of sys-
tem response, such as an enriched bifurcation scenario
characterized by the existence of transcritical and torus
bifurcations culminating with the onset of additional
periodic solutions and quasiperiodic solutions, respec-
tively.

In a more general perspective, the proposed model,
although entailing a strong simplification of the various
and complex phenomena that are known to character-
ize the AFM operation and that can be investigated
only via experimental analyses, proved to be able to
grasp the fundamental aspects of the system itself and,
at the same time, to be sufficiently manageable to be
treated with both analytical and numerical methods. In
this spirit, it is useful to investigate the system stabil-
ity and identify the safe and unsafe regions depending
on its main parameters, thus also providing guidance
on those behaviors that experimentalists can expect to
find. Moreover, the results obtained with this model
also provide information on the effects of a local con-
trol on the overall dynamical behavior of the system and
then allow one to more generally evaluate the effective-
ness and possible criticalities of a category of control
techniques.
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Appendix 1

The integral expressions in (15) are

I1 = (I11 − μI12) , I4 = (I41 − μI42) ,

I11 =
∫ 1

0
Φ2

1 ds = 1,

I41 =
∫ 1

0
Φ1

(
Φ1s

∫ s

1

∫ s

0
Φ1

2
s ds ds

)

s
ds,

∫ 1

0
Φ1Φ1ssss ds = ω2

1

∫ 1

0
Φ2

1 ds = ω2
1 I11,

I42 =
∫ 1

0
Φ1

(
Φ1

3
s

)
s

ds,

I12 =
∫ 1

0
Φ1Φ1ss ds,

I5 =
∫ 1

0
Φ1 (Φ1s (s − 1))s ds =

∫ 1

0
Φ1

2
s (1 − s) ds,

I2 =
∫ 1

0
Φ1 ds,

I6 =
∫ 1

0
Φ1

(
Φ1

3
s (s−1)

)
s

ds =
∫ 1

0
Φ1

4
s (1−s) ds,

I3 =
∫ 1

0
Φ1

(
Φ1s (Φ1sΦ1ss)s

)
s ds

= 2
∫ 1

0
(Φ1sΦ1ss)

2 ds,

I7 =
∫ 1

0
Φ1

(
Φ1s

∫ s

1

(∫ s

0
Φ1

2
s ds

)

ss
ds

)

s
ds. (45)

Appendix 2

MSM: second-order solution

Substitution of p1 (36) in the second equation of (33),
and elimination of secular terms yield

D1 B = 0 (46)

so that

B = B(T2, T3), p2 = 0 (47)

Using (36) and (47), and remembering that x̃ref1 =
Aun(T1, T2, T3)eiω1T0+c.c. is the solution of amplitude
Aun(T1, T2, T3) of the first-order uncontrolled system,
the first equation of (33), without x̃ref2 and N22(x̃ref1)

terms, becomes

D2
0 y2 + ω2

1 y2

= −2C214
(

AĀ + AĀun
) − C212 B2

− eiω1T0 (C213 (A + Aun) B + 2iω1 D1 A)

− C211e2iω1T0
(

A2 + 2AAun

)
+ c.c. (48)

and the solvability condition implies that

D1 A = iC213

2ω1
(A + Aun) B (49)

For the uncontrolled system, it is D1 Aun = 0 and
thus Aun = Aun(T2, T3). The particular solution at this
order is

y2 = C211

3ω2
1

(
A2 + 2AAun

)
e2iω1T0

−2C214

ω2
1

(
AĀ + AĀun

) − C212

ω2
1

B2 + c.c. (50)
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while the solution of the uncontrolled system is x̃ref2 =
C211
3ω2

1
A2

une2iω1T0 − 2C214
ω2

1
Aun Āun + c.c. For the expres-

sion of the Ci jk coefficients, see “Appendix 3” of [37].

MSM: third-order solution

At the third order, by means of the obtained results, the
second of (34) becomes

D0 p3 = −D2 B + k̂gC11 B/ω2
1 − k̂g Aeiω1T0 + c.c.

(51)

and the secular terms elimination, providing

D2 B = k̂gC11 B/ω2
1, (52)

permits to obtain

p3 = i k̂g Aeiω1T0

ω1
+ c.c. (53)

Here, x̃ref3 and N32(x̃ref1, x̃ref2) terms, together with
terms related to the horizontal and vertical excitations,
are present also in the uncontrolled system, so that they
can be neglected; using (36), (46), (47), (49), (50), (52),
(53), and being D1 Aun = 0 (“Appendix 2” of [37]), the
first equation of (34) hence becomes

D2
0 y3 + ω2

1 y3

= γ31eiω1T0 + γ32e2iω1T0 + γ33e3iω1T0 + γ35 B3

+ γ36
(

AĀ + ĀAun + AĀun + Aun Āun
)

B

+ γ37
(

Ā + Āun
)

D1 A + c.c. (54)

with γi j defined in “Appendix 3” of [37]. Note that γ31

depends on D2 A, so that the solvability condition of
(54) provides

D2 A = −C35ω
2
1 + C11k̂g

2ω2
1

A

+ i
C301

(
A2 Ā+2AĀAun + ĀA2

un + A2 Āun +2AAun Āun
)

2ω1

+ i
C302

(
AB2 + Aun B2

)

2ω1
(55)

The particular solution at the third order for the con-
trolled system results

y3 = C306 B3+C303

(
A3+3A2 Aun +3AA2

un

)
e3iω1T0

+ C304

(
A2 B + 2AAun B + A2

un B
)

e2iω1T0

+ C305
(

AĀB+ Aun ĀB+ AB Āun + Aun B Āun
)

+ c.c. (56)

For what concerns the uncontrolled system, the solv-
ability condition at the third order yields

D2 Aun = −C35

2
Aun + i

C301

2ω1

(
A2

un Āun

)

+ Csv

4ω1
eiσvT2 + Csu

4ω1
ei(σu T2+φu)

+ i
Ccu

4ω1
ei(σu T2+φu)

whose expression is later on needed, and the particular
solution results x̃ref3 = C303 A3

une3iω1T0 + c.c.

MSM: fourth-order solution

By means of the previous results, the second equation
of (35) at the fourth order becomes

D0 p4

= −D3 B − i
k̂g

ω1
D1 Aeiω1T0

+ 2C214k̂g

ω2
1

(
AĀ + Aun Ā + AĀun

) + C212k̂g

ω2
1

B2

− C211k̂g

2ω2
1

(
A2 + 2AAun

)
e2iω1T0 + c.c. (57)

with the vanishing of secular term providing

D3 B = +2C214k̂g

ω2
1

(
AĀ + Aun Ā + AĀun

)

+ C212k̂g

ω2
1

B2 (58)

and the particular solution resulting

p4 = − iC213k̂g

2ω3
1

(AB + Aun B) eiω1T0

+ iC211k̂g

3ω3
1

(
A3 + 2AAun

)
e2iω1T0 + c.c. (59)

The first equation of (35) can thus be rewritten as

D2
0 y4 + ω2

1 y4

= −A2
(
γ47 Ā2 + 2γ47 Ā Āun + γ47 Ā2

un

)

− 4γ47 AAun Ā Āun − A
(

B2 (
γ45 Ā + γ45 Āun

)

+ γ49 Āun + γ54e−iσvT2 + γ55e−iσu T2−iφu
)

− 2γ47 A2
un Ā Āun − γ45 Aun B2 Āun

− B
(
γ48 ĀD1 A + γ48 Āun D1 A

)

− γ57 ĀD2
1 A − γ56 ĀD2 A
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− γ56 ĀD2 Aun − γ57 Āun D2
1 A

− γ56 Āun D2 A − γ50 D1 AD1 Ā

− γ46 B4 − γ41eiω1T0 − γ42e2iω1T0

− γ43e3iω1T0 − γ44e4iω1T0 + c.c. (60)

The secular terms elimination requires that γ41, which
depends on D3 A, identically vanishes. Using Eqs.
(46),(49),(52),(55), and assuming that 2D1 D2 A =
dD1 A
dT2

+ dD2 A
dT1

[39], it results

D3 A = B3 (γ402 A + γ402 Aun)

+ B
(
γ401 A2 Ā + γ401 A2 Āun

+ 2γ401 AĀAun + 2γ401 AAun Āun

+ γ404 A + γ403 Aun

+ γ401 ĀA2
un + γ401 A2

un Āun

+ γ405eiσu T2+iφu + γ406eiσvT2
)

(61)

Appendix 3

Terms chk , h, k = 1, ..., 5 of the Jacobian matrix (42)
are

c11 = 1

2
(b(2β5 − β1( j + jun)(n + nun))

− β4( j (n + nun) + junn))

c12 = 1

4
(−4β2b3 − 4β3b2 − b(β1(( j + jun)2

+ 3(n + nun)2) + 4β7)

− β4( j2 + 2 j jun + 3n(n + 2nun)))

c13 = 1

2
(b(2β6 − β1( j + jun)(n + nun))

− β4( j + jun)(n + nun) + 2β9)

c14 = 1

4
(−4β2b3 − 4β3b2

− b(β1(( j + jun)2 + 3(n + nun)2) + 4β7)

− β4(( j + jun)2+3(n+nun)2)+4ω1(Ωu −1))

c15 = 1

4
(−(n + nun)(12β2b2

+ 8β3b + β1(( j + jun)2 + (n + nun)2)

+ 4β7) + 4β5 jun + 4β6 j + 8β8) (62)

c21 = 1

4
(4β2b3 + 4β3b2

+ b(β1(3( j + jun)2 + (n + nun)2) + 4β7)

+ β4(3 j ( j + 2 jun) + n(n + 2nun)))

c22 = 1

2
(b(β1( j + jun)(n + nun) + 2β5)

+ β4n( j + jun) + β4 jnun)

c23 = 1

4
(4β2b3 + 4β3b2

+ b(β1(3( j + jun)2 + (n + nun)2) + 4β7)

+ β4(3( j + jun)2+(n+nun)2)−4ω1(Ωu −1))

c24 = 1

2
(b(β1( j + jun)(n + nun) + 2β6)

+ β4( j + jun)(n + nun) + 2β9)

c25 = 1

4
(( j + jun)(12β2b2 + 8β3b

+ β1(( j + jun)2 + (n + nun)2)

+ 4β7) + 8β10 + 4(β5nun + β6n))

c31 = C214kg j

ω2
1

c32 = C214kgn

ω2
1

c33 = 1

ω2
1

C214kg( j + jun)

c34 = 1

ω2
1

C214kg(n + nun)

c35 = 1

ω2
1

kg(2C212b + C11)

c41 = −1

4

(
C301 junnun

ω1
− 2C35

)

c42 = ω1(Ωu − 1) − C301( j2
un + 3n2

un)

8ω1

c51 = C301(3 j2
un + n2

un)

8ω1
− ω1(Ωu − 1)

c52 = 1

4

(
C301 junnun

ω1
− 2C35

)

Appendix 4

Coefficients fhkl of the steady-state responses (41) are

fy0 = −C214( j2 + 2 j jun + n2 + 2nnun)

2ω2
1

+ C306b3 − C212

ω2
1

b2

+
(1

4
C305(( j + jun)2+(n+nun)2)− C11

ω2
1

)
b

fyc1 = j

fys1 = −n
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fyc2 = +
(C211( j2 + 2 j jun − n(n + 2nun))

6ω2
1

+ 1

2
C304( j + jun −n−nun)( j + jun +n+nun)b

)

fys2 = −
(

C304( j + jun)(n + nun)b

+ C211( j (n + nun) + junn)

3ω2
1

)

fyc3 = +1

4
C303

(
j3 + 3 j2 jun + 3 j ( j2

un − (n + nun)2)

− 3 junn(n + 2nun)
)

fys3 = +1

4
C303

(
−3 j2(n + nun) − 6 j jun(n + nun)

+ n(−3 j2
un + n2 + 3nnun + 3n2

un)
)

fz0 = b

fzc1 = −kgn

ω1

fzs1 = −kg j

ω1
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